NAG Toolbox for MATLAB

e02gc

1 Purpose

e02gc calculates an l_{∞} solution to an over-determined system of linear equations.

2 Syntax

[a, b, relerr, x, resmax, irank, iter, ifail] =
$$e02gc(n, a, b, relerr, 'm', m, 'tol', tol)$$

3 Description

Given a matrix A with m rows and n columns $(m \ge n)$ and a vector b with m elements, the function calculates an l_{∞} solution to the over-determined system of equations

$$Ax = b$$
.

That is to say, it calculates a vector x, with n elements, which minimizes the l_{∞} norm of the residuals (the absolutely largest residual)

$$r(x) = \max_{1 \le i \le m} |r_i|$$

where the residuals r_i are given by

$$r_i = b_i - \sum_{i=1}^n a_{ij} x_j, \qquad i = 1, 2, \dots, m.$$

Here a_{ij} is the element in row i and column j of A, b_i is the ith element of b and a_j the ith element of a_j . The matrix a_j need not be of full rank. The solution is not unique in this case, and may not be unique even if a_j is of full rank.

Alternatively, in applications where a complete minimization of the l_{∞} norm is not necessary, you may obtain an approximate solution, usually in shorter time, by giving an appropriate value to the parameter **relerr**.

Typically in applications to data fitting, data consisting of m points with co-ordinates (t_i, y_i) is to be approximated in the l_{∞} norm by a linear combination of known functions $\phi_i(t)$,

$$\alpha_1\phi_1(t) + \alpha_2\phi_2(t) + \cdots + \alpha_n\phi_n(t).$$

This is equivalent to finding an l_{∞} solution to the over-determined system of equations

$$\sum_{i=1}^{n} \phi_j(t_i)\alpha_j = y_i, \qquad i = 1, 2, \dots, m.$$

Thus if, for each value of i and j the element a_{ij} of the matrix A above is set equal to the value of $\phi_j(t_i)$ and b_i is set equal to y_i , the solution vector x will contain the required values of the α_j . Note that the independent variable t above can, instead, be a vector of several independent variables (this includes the case where each ϕ_i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the dual formation of the l_{∞} problem (see Barrodale and Phillips 1974 and Barrodale and Phillips 1975). The modifications are designed to improve the efficiency and stability of the simplex method for this particular application.

4 References

Barrodale I and Phillips C 1974 An improved algorithm for discrete Chebyshev linear approximation *Proc.* 4th Manitoba Conf. Numerical Mathematics 177–190 University of Manitoba, Canada

[NP3663/21] e02gc.1

e02gc NAG Toolbox Manual

Barrodale I and Phillips C 1975 Solution of an overdetermined system of linear equations in the Chebyshev norm [F4] (Algorithm 495) *ACM Trans. Math. Software* **1 (3)** 264–270

5 Parameters

5.1 Compulsory Input Parameters

1: n - int32 scalar

the number of unknowns, n (the number of columns of the matrix A).

Constraint: $\mathbf{n} \geq 1$.

2: a(lda,sda) - double array

 $\mathbf{a}(j,i)$ must contain a_{ij} , the element in the *i*th row and *j*th column of the matrix A for, $i=1,2,\ldots,m$ and $j=1,2,\ldots,n$ (that is, the **transpose** of the matrix). The remaining elements need not be set. Preferably, the columns of the matrix A (rows of the parameter \mathbf{a}) should be scaled before entry: see Section 7.

3: b(m) – double array

 $\mathbf{b}(i)$ must contain b_i , the *i*th element of the vector b, for $i = 1, 2, \dots, m$.

4: relerr – double scalar

Must be set to a bound on the relative error acceptable in the maximum residual at the solution.

If relerr ≤ 0.0 , then the l_{∞} solution is computed, and relerr is set to 0.0 on exit.

If relerr > 0.0, then the function obtains instead an approximate solution for which the largest residual is less than 1.0 + relerr times that of the l_{∞} solution; on exit, relerr contains a smaller value such that the above bound still applies. (The usual result of this option, say with relerr = 0.1, is a saving in the number of simplex iterations).

5.2 Optional Input Parameters

1: m - int32 scalar

Default: The dimension of the array **b**.

the number of equations, m (the number of rows of the matrix A).

Constraint: $m \ge n$.

2: tol – double scalar

A threshold below which numbers are regarded as zero. The recommended threshold value is $10.0 \times \epsilon$, where ϵ is the *machine precision*. If **tol** ≤ 0.0 on entry, the recommended value is used within the function. If premature termination occurs, a larger value for **tol** may result in a valid solution.

Suggested value: 0.0.

Default: 0.0

5.3 Input Parameters Omitted from the MATLAB Interface

sda, lda

5.4 Output Parameters

1: a(lda,sda) - double array

Contains the last simplex tableau.

e02gc.2 [NP3663/21]

2: b(m) – double array

The *i*th residual r_i corresponding to the solution vector x, for i = 1, 2, ..., m. Note however that these residuals may contain few significant figures, especially when **resmax** is within one or two orders of magnitude of **tol**. Indeed if **resmax** \leq **tol**, the elements **b**(i) may all be set to zero. It is therefore often advisable to compute the residuals directly.

3: relerr – double scalar

Is altered as described above.

4: $\mathbf{x}(\mathbf{n})$ – double array

If **ifail** = 0 or 1, $\mathbf{x}(j)$ contains the *j*th element of the solution vector x, for j = 1, 2, ..., n. Whether this is an l_{∞} solution or an approximation to one, depends on the value of **relerr** on entry.

5: resmax – double scalar

If **ifail** = 0 or 1, **resmax** contains the absolute value of the largest residual(s) for the solution vector x. (See **b**.)

6: irank – int32 scalar

If **ifail** = 0 or 1, **irank** contains the computed rank of the matrix A.

7: iter – int32 scalar

If **ifail** = 0 or 1, **iter** contains the number of iterations taken by the simplex method.

8: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Note: e02gc may return useful information for one or more of the following detected errors or warnings.

ifail = 1

An optimal solution has been obtained but this may not be unique (perhaps simply because the matrix A is not of full rank, i.e., irank < n).

ifail = 2

The calculations have terminated prematurely due to rounding errors. Experiment with larger values of **tol** or try rescaling the columns of the matrix (see Section 8).

ifail = 3

```
On entry, \mathbf{lda} < \mathbf{n} + 3, or \mathbf{sda} < \mathbf{m} + 1, or \mathbf{m} < \mathbf{n}, or \mathbf{n} < 1.
```

7 Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy that could be obtained by applying Gaussian elimination with partial pivoting to the n+1 equations which have residuals of largest absolute value. The accuracy therefore varies with the conditioning of the problem, but has been found generally very satisfactory in practice.

[NP3663/21] e02gc.3

e02gc NAG Toolbox Manual

8 Further Comments

The effects of m and n on the time and on the number of iterations in the simplex method vary from problem to problem, but typically the number of iterations is a small multiple of n and the total time is approximately proportional to mn^2 .

It is recommended that, before the function is entered, the columns of the matrix A are scaled so that the largest element in each column is of the order of unity. This should improve the conditioning of the matrix, and also enable the parameter **tol** to perform its correct function. The solution x obtained will then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each j = 1, 2, ..., n, the elements of the jth column are multiplied by the constant k_j , the element x_j of the solution vector x must be multiplied by k_j if it is desired to recover the solution corresponding to the original matrix A.

9 Example

```
n = int32(3);
a = zeros(6, 6);
for i = 1:5
  a(1, i) = exp((i-1)/5);

a(2, i) = exp(-(i-1)/5);
  a(3, i) = 1;
end
b = [4.501;
     4.36;
     4.333;
     4.418;
     4.625];
relerr = 0;
[aOut, bOut, relerrOut, x, resmax, irank, iter, ifail] = eO2gc(n, a, b,
relerr)
aOut =
   -3.0207
              -5.5042
                         8.8604
                                   1.0000
                                               0.3355
                                                         6.0000
   -1.4796
             -4.9123
                         5.4459
                                   -0.3289
                                               0.0541
                                                        -4.0000
                        -8.3604
    3.0207
              5.5042
                                   -0.0000
                                               0.1645
                                                        8.0000
                                               0.4459
    1.4796
              4.9123 -5.9459
                                  0.3289
                                                        -7.0000
                        1.4822
                                               0.0010
             2.0149
    1.0049
                                   0.0003
                                                               0
    1.0000
              2.0000
                         3.0000
                                    5.0000
                                                               0
bOut =
   -0.0010
    0.0007
    0.0010
   -0.0010
    0.0010
relerrOut =
     \cap
    1.0049
    2.0149
    1.4822
resmax =
    0.0010
irank =
           3
iter =
            4
ifail =
           0
```

e02gc.4 (last) [NP3663/21]